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Abstract 

Any (anti)-instanton yields a set of three contact forms on S’. The basic (anti)-instanton yields 
a hypercontact structure. Also, we indicate sufficient conditions for the components of an SU(2) 
connection to be contact forms. Finally, we prove, under a mild hypothesis, that the three contact 
forms of any hypercontact structure define the same contact structure. 
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1. Introduction 

This note is a commentary on the recent observation by Geiges and Thomas [4] that the 

basic anti-instanton yields a hypercontact structure on S7. Here we will discuss only instan- 
tons, since by reversing the orientation of the bundle, instantons become anti-instantons. 
Recall that an instanton is a self-dual connection on an SU(2)-bundle over S4 with Pontrya- 
gin number k = + 1, which we can assume to be the “tautological” bundle n : S’ -+ S4 

See [ 1,3,7]. 
Our first remark is that Geiges-Thomas’ observation is transparent from the explicit 

formula of a “natural” connection on the “tautological” bundle whose potential over S’ - 
(p} z iw4 is 
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where p = (0, O,O, 0, 1) and x E Iw4 is considered as a quaternionic variable. This is the 
basic instanton. 

Our second remark is that Geiges-Thomas arguments to prove their observation actually 
allows to prove a more general result (Theorem 6). 

Our final remark (Theorem 10) is that, under a mild hypothesis, the three contact forms 
of a hypercontact structure define the same contact structure. We prove that the barycentric 
path between any two of these contact forms is still a contact form and then apply the 
Gray-Martinet stability theorem [5]. 

We now recall the relevant definitions [2,4,5]. A contact form on a smooth manifold M of 
dimension 2n + 1 1 3 is a l-form a such that a! A (da)” is everywhere nonzero. The contact 
structure defined by a! is the hyperplane /Z(U) c TM of kernels of cr. Two contact forms 
ot and cr2 define the same contact structure if and only if there exists a smooth nowhere 
zero function u such that CQ = uut . For any contact form CY, there exists a unique vector 
field &, called the characteristic vector field of (Y, or the Reeb field, such that i( = 1 
and i (&) da! = 0, here i (.) stands for the interior product. An almost contact structure is a 
triple (c#J,.$, 71) where 4 is a l-l tensor field, [ is a vector field, r] a l-form such that 

r?(C) = 17 @2(x) = -X + n(X)<, VX. 

These conditions imply that #L$ = 0. The quatemionic analogue of an almost contact 
structures is an almost contact 3-structure: that is a set of three almost contact structures 

($i, t;, Vi > such that 

Vi(tji) = 6” ‘J ’ hcj = cijktk, vi o @j = cijkqkt 

@i4j(x) = -6ijx + rlj(x)ci + cijk4kx. 

Here Eijk is zero when all the symbols are not distinct and if they are it is equal to the 
signature of the corresponding permutation of the integers 1, 2, 3. See [4]. 

A triple of contact forms (at, ~22, ~3) is called a contact 3-structure if there exists an 
almost contact 3-structure (@i, ti, vi) such that 

ai > 03 dai t&X, +i Y) = dai (X, Y), vx, Y. 

Such an almost contact 3-structure is said to be compatible with (at, (112, a3}. 

Definition 1. A hypercontact structure on a riemannian manifold (M, g) consists of 

(((21l,(y2,(y3),(~i,~i,~i)i=1,2,3), 

where (at, ~2,123) is a contact 3-structure with a compatible almost contact 3-structure 
($i, [i, vi) as above and satisfying the following: 

Vi(X) = g(X,ti), g(X, h Y) = dai (X3 Y)t 

g(X7 Y) = g(4iX74iY) + Vi(x)Vi(Y>. 

If one can choose ni = ai, then we say that the hypercontact structure is a contact metric 
3-structure. A Sasakian 3-structure is a contact metric 3-structure such that ci are Killing 
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vector fields with respect to the metric g and [ti, tj] = 2Eijkck. We refer to (41 for basic 
examples of hypercontact structures. 

2. The basic instanton 

The field W of quaternions {x = xt +x2i + x3j + xqk, xi E R} where i2 = j2 = k2 = - I 
and ij = -ji = k; jk = -kj = i; ki = -ik = j can be identified with R4 and with C2. 
Writingx = XI +xzi+x3j+xqk = zt +z2j wherezt = XI +x2i,z2 = x3 +xqi establishes 
an identification of W and C2. The conjugate X of a quatemion x is XI - x2i - xjj - xqk and 
xX = Xx = 1~1~. Also W can be viewed as the set of 2x2 complex matrices: x = :t + z2j 
corresponds to the matrix 

the determinant of which is the square norm of x. Therefore SU (2) is the group of norm 
1 quatemions, i.e. a sphere S3. Its Lie algebra su(2) is the set of skew hermitian matrices 
with zero trace. The Pauli matrices: 

form a basis of su(2). Their commutation relations are: 

]r~ > td = %, bl, r31 = -2t2, [t2, s3l = 2Sl. 

Hence su(2) is isomorphic with the imaginary part (x2i + xjj + xqk) of W: we identify 
tt with i, r2 with j and r3 with k. 

NOW S7 = ((p,q) E W2, IpI2 + (q12 = 11, and S4 is the W projective line, i.e. the set of 
equivalence classes [p, q] of elements in W2 - (0) : (p, 4) - (p'. 9') iff p = rp’, q = rq’ 
for some r E W - (0). 

The tautological bundle assigns to (p. q) E S’ the equivalence class [p, q] E S4. This is 
a principal SU(2) bundle with Pontryagin number k = +1 . It is easy to see that cr(p, q) = 

Im(p dp + q d$ is a connection such: 

where p : R4 --+ S’ is the section over S4 - (O,O, O,O, 1) x R4: 

(x7 1) 
@CX) = (1 + lx12)l/2’ 

In other words, (Y is the basic instanton [ 11. See [3, pp. lOO-1041. 
Settingp = x~+x~i+xsj+xqk,q = yt+yzi+y3j+y~k,anda! = (at)i+(a2)j+(o3)k, 

we have: 
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a3 = x4 d.v - x1 h4 + x3 h2 - x2 dw3 + y4 dyl - yi dy4 + y3 dyz - y2 dy3. 

The radial vector field 

4 

X = ~xd,, + ynayn 
n=l 

satisfies: i(X)oi = 2ai for i = 1,2,3, where wi = doi. By Lemma 3.3 of Geiges-Thomas 
[4], ((~1, cq, 1x3) form a hypercontact structure on S’, and even a Sasakian 3-structure. Hence 
we have verified directly the observation of Geiges and Thomas in [4]. 

Theorem 2. The basic instanton yields a Sasakian 3-structure on S’. 

Remark 3. Observe that permutations of coordinates in Iw8 exchange the contact forms oi. 
Hence these three contact forms define the same contact structure on S’. It is also worth 
noting that permutations of coordinates exchange the contact forms above into the contact 
forms defining the hypercontact structure in Example 2 of [4]. In Theorem 10 we prove that, 
in general, the contact forms of a Sasakian 3-structure define the same contact structure. 

3. General SU (2) connections and contact forms 

Consider a principal SU(2) bundle n : P + M over an even-dimensional manifold M, 
so P is odd-dimensional. Under which conditions the components of a connection along 
the basis tl , ~2, r3 of su(2) are contact forms? 

If M is point, then P = SU(2) z S3, and we may consider the components of the 
canonical l-form 8 on SU(2). By definition, 0(X) = X for all X E su(2), hence if Hi 
are the components along the Pauli matrices ti, then Bi (rj) = 6ij. Recall the commutation 
relations of ri : 

[tl, r21 = 2% [Tl, t31 = -2t2, [r2, x31 = 2t1. 

These commutation relations show that (0, A dQi)(tl, ~2, x3) = 2 or -2 . Hence each Oi is 
a contact form on SU (2) x S3. 

Soppose now dim(M) = 2m 2 2, and c~ is a connection with curvature Q, then 

CY= 
i: airi, R = ef2i?Ci. 

i=l i=l 

The equation D = da + i lo, a] reads in components: 

Q2 = dcr2 + a3 A cyl, Q3 = da3 +crl ACZ~. 
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Propositiofl 4. If the 2-forms Ri are nondegenerate on the horizontal distribution ( i.e. the 
kernel of CY), then the 1 -forms ai, i = 1, 2, 3, are contact forms. 

Proof Let ti be the fundamental vector fields defined by ri Then (Y (&) = r; hence ai (6, ) = 
6ij. Moreover, since & is a vertical vector field, i (&, )52 = 0. i.e. i(&)sZj = OVj. Hence 

Since oi (cj) = Sij, i (&) dak = 0. Therefore if ai were contact forms, the vector fields 6, 
would be their corresponding Reeb fields. 

Let 2m be the dimension of M and compute: 

aI A (da,)m+’ = at A (fit - cIy7 A cQ+’ 

= (CIt A szt - (;Y] A c;y2 A a!3) A (nt - Ly? A c# 

= (crt A 52: - 2~) A CY~ A ag) A (nj - ~2 A c#-’ 

m+l 
=a1 A RI -(m+l)crt AIY~A(;YjAfim 

= (m + l)cr) A cq A a3 A fi;,, 

Hence if B is a basis of the horizontal distribution at a point p, then ot A (dolt)m+’ ([I, 62. 
<3,B) = Q:(B). Hence at is a contact form iff Q is nondegenerate on the horizontal 
distribution. A similar calculation works for CQ, aj as well. 0 

Definition 5. A hyperkahler structure on a riemannian manifold (M, g) is a set of three 
complex structures Jt ,&,.I3 such that Jt 52 = -J2Jt = J3, Jt J3 = -53Jt = - 52, .I?& = 
-J3J? = 11, g o Ji = Ji and the 2-forms Szi defined by Qi(X,Y) = g(JiX, Y) are 
closed (i.e. symplectic forms). Alternatively, we can say that a hyperkahler structure on the 
riemannian manifold (M, g) is a set of three symplectic forms Di such that there exist three 
complex structures Ji which leave g invariant, satisfy the quaternion identities and such 
that Qi(X, Y) = g(JiX, Y). 

Theorem 6. Let n : P --+ M be a principal W(2) bundle and CY a connection with curvature 
fl and let oi, Ri ,i = 1, 2, 3, be the components of a and Q along the Pauli matrices (basis 
of su(2)). Suppose there is a family on sections oj : Uj -+ P trivializing the bundle (Here 
(Uj) is an open cover over which the bundle is trivial), and smooth nowhere vanishing 
,functions vj on Uj such that (vj CT,! f2i ). i = 1,2, 3 form a hyperkahler structure on I/l, then 
(CY~ ] are contact forms on P. 

Corollary 7. Any (anti)-instanton yields a set of three contact,forms. 

Proof Acoording to [ 1 J, see also [3,7], any instanton is gauge equivalent with a connection 
01 whose potential over U+ = S4 - {p), p = (O,O,O,O, 1) is 
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p$a = Im ( (X-u)dF 

A2 + Jx - u/2 ) ’ 

where a E W is a quatemionic parameter and A is a positive real number. Over U_ = 
S4 - l-p), we have 

~*_a = Im 
( 

h2(x + a) ti 

1 +A++.]2 > ’ 

where CL_ is the stereographic projection from the south pole -p. Over U+, U_, the cur- 
vature form D reads 

( dxr\dF 
Q+ = /J 52 = Irn (A2 + Ix _ .12)2 : 

) 
’ 

Q_=~u*_Q=Irn 
( 

h2dxAd.?? 

(1 + A2lx + .]2)2 1 ’ 

whose components are 52;. _ = (K+, _)oi with: 

WI =drl r\dr2+&3Adr4, 

02=titr\dx4+ti2/\dy& 

w3=dxl Adq-dx2Adx3, 

and 

K+ = -2/(A2 + ]x - a~~)~, K- = -2h2/(1 + Ix + ~1~)~. 

The three symplectic forms above satisfy: wi (X, Y) = Ji X . Y where . is the usual dot 
product and Ji are the following complex structures: 

~~~~ = -a2, ha3 = a4, J2a, = -a3, 
J2a2 = a4, J3a, = -a4, J3a2 = -a3 

and obviously these complex structures satisfy the quatemionic identities. Therefore, the 
hypothesis of our Theorem 6 are satisfied. The corollary follows. 0 

Remark 8. The symplectic forms oi, i = 1, 2,3, above form a basis of the vector space of 
self-dual 2-forms on R4. Hence if a is a self-dual connection and R is its curvature, then for 
any section a over a trivializing contractible open set U, (a*SZ)i JU is a linear combination 
of wi; in Corollary 7, they are just multiples of wi by nowhere vanishing functions. But, 
in general, (a*L?)i (U are more complicated. For instance if the Pontryagin number of an 
SU(2) bundle over S4 is different from +l, or - 1, (a*i2)i ICI cannot be a multiple by a 
nowhere vanishing function of a hypersymplectic structure since according to [4], the Di 
are not all nondegenerate. 

Proof of Theorem 6. In view of Proposition 4, we need only to check that $?i are non- 
degenerate on the horizontal distribution. This is a local problem: we need to check this 
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only over a trivializing open subset U of M. Let CJ : U + P be a section and v a smooth 
nowhere zero function on U such that (ui = vo*Qi ), i = 1, 2, 3, form a hypersymplectic 
structure: i.e. there exists a riemannian metric g on U, three almost complex structures Jj 
on U satisfying the quaternionic identities (see Definition 5) and such that g(JiX, Y) = 
oi(X,Y)andgoJi =g. 

We now reproduce Geiges-Thomas arguments with small modifications. We denote by 
H C T(P) the horizontal space, i.e. the kernel of a! and by G = rr*g the pullback of the 
metric g on Pu = n-‘(U). If X is a vector field on P, we denote by Xh its horizontal 
component. If X is horizontal, then (cr* (n*X))h = X and fi (Xh. .) = 52 (X, .) since Sz 
vanishes on vertical vectors. 

Let now X, Y be two horizontal vector fields on P at a(x), x E U: 

This shows that J2i are nondegenerate at H,(,),x E U, since rr* is an isomorphism 
between the horizontal space at o(x) and the tangent space at x E U. 

Any other point p E Pu has the form p = a(x) . a = R, (a(x)) for some a E SU(2). 
If X, is a horizontal vector field at p = a(x) . a, i.e. X, E H,,, then X, = (Ra)rXn(x). 
Hence for X,, Y, E HP, we have 

f-Jn(~)(x~, Yp) = n(Ra(a(x)))((Ra),X,(x), (RaLYc+)) 
= (R$W(x>)(X,cx,, Y,(x)). 

But the curvature form satisfies R,*Gi’ = ad,-] (52) = aflu-‘. Let (,Uij) be the matrix of 
ad,-, : su(2) + su(2) within the basis tt, ~2, ~3, then 

3 

Qi(p)(Xp, Yp) = C kjQj(~(x))(XOcx), yO(X)> 
j=l 

= c Pij(l/V)g(JjJf*X,n*Y) = (l/V)g(@i~*X3~*Y), 

j=l 

where @i = c;‘=t pij Jj. Since ad,-, preserves the natural inner product: (m, n) = 
-itr(m . n), the matrix (pij) is an orthogonal matrix. This implies that the l-l tensors 
defined on U satisfy the quatemionic identities since the Ji’s did. In particular they define 
complex structures on U depending on a E SU (2). The equation 

Qi(P)(Xp, Yp> = (l/V)g(@i~*X,~*Y) 

shows that Szi are nondegenerate at the horizontal distribution at a(x) . a. 0 
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Remark 9. 
(1) For X E Hp,p ,= &(a(~)), we define following [4], ‘PiX E H,, by PiX = 

((R,)*@in*X)h. Then n*IyiX = @in,X. Extending iPi and the riemannian metric 
G in the vertical direction in the obvious way (like in [4]) into a 1-l tensor field, and 
a riemannian metric on P we still denote @i and G, we get a hypercontact structure 
{G, ci, cq , pi }, i = 1,2,3 on Pu . For instance, any instanton defines a hypercontact 
structure on S’ - S3 = ir-‘(U+, _). As Geiges-Thomas observed, this hypercontact 
structure can be extended to the entire S’ for the basic (anti)-instanton. The problem for 
the general (anti)-instanton is that the metrics and the almost complex structures over 
U+ and U- do not match on the intersection when the parameter h and the quaternionic 
center a in the formulas for potentials of instantons (see Section 2) are different from 
1 (for A) and 0 for the quatemionic parameter. 

(2) In Theorem 2, we have not assumed that the hypersymplectic structures defined on the 
open sets (Uj) are “compatible” so to form an almost quaternion structure on A4 like in 
[6]. If this is the case, then the hypercontact structures obtained on {n-l Uj) fit together 
into a hypercontact structure on P. 

4. Some properties of hypercontact structures 

In the notion of a hypercontact structure ((a 1, ~22, a3), (@, ci, qi)i= 1.2.3) on a riemannian 
manifold (M, g), the ingredients are tied up with strong relations. This suggests that they 
are not independent. For instance it is well known that in case of hyperkahler manifolds (the 
even-dimensional version of hypercontact structures), the riemannian metric is determined 
by the kahler forms, which also determine the three complex structures. Also any linear 
combination of the three kahler forms is again a kiihler form. If they had the same coho- 
mology class, they would be all equivalent by Moser’s theorem [S]. We have the analogous 
result. 

Theorem 10. Let (((~1, CQ, OJ~), (&, ei, r/i)i=l, 2,3] be a hypercontuct structure on a rie- 
mannnian manifold (M, g) such that ai (ej) = 0, Vi # j. Then the three contact forms cq 
represent the same contact structure. 

ProojI For t E [0, l] we want to show that tit = tal + (1 - b)a2 is a contact form. By 
Gray’s stability theorem [5], it follows that there exists a diffeomorphism h and a smooth 
function u such that h*cxl = ~2, i.e. that or and a2 are equivalent. The same argument 
shows that CQ and cr3 are equivalent. 

Let H be the g-orthogonal complement to the three-dimensional distribution V spanned 
by et,&, (3. The dimension of M being 4n + 3, the dimension of H is 4n. Observe first 
that 

dw(X, Y) = tg(X,hY) + (1 - t)g(X,hY) = g(X, 041 + (1 - t)&)Y). 
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Let & denote (t$l + (1 - t)&), then on H, we have c#$ = -(t2 + (1 - t)2)1d, since 
4: = #$ = -Id,f#J]C#Q = -&~$t. Hence dwt is nondegenerate on H. Let x E M and let 
(HI, . . , H4n) be a basis of Hx such that (dot)2”(H], . . , H4n) = 1, we want to show 
that 

wy A (dw,)*“+’ (X)(el,c2,<3,Hl, . . . ,H4n) fo. 

The left-hand side of the expression above is a sum (with appropriate signs) of terms of the 
following type: 

wr(Xt)(dwt(Xz, X3)). . . (dw(&n+2, X4n+3)), 

where {Xi) are permutations of (t) and (Hj). Any term of the form dot(&, Hi) vanishes. 
Indeed,dw,(Hj,&) =tg(Hj,$tci)+(l -t)g(Hj,&C;i) =Osince$~k{i =~kij(j and H is 
g-orthogonal to the pace V spanned by the ci. Therefore 

Q A (dwt)*“+’ (X>(~1,~2,~3,Hl,...,H4n) 

= (wr A dot)(~1,~2,~3)(dwr)2n(H,, . . .9 H4n) 

= (WY A dw)(x)(~1,~2,~3). 

We now show that this expression never vanishes. First observe that the vector fields {i are 
orthonormal: 

Hence 

da,(t,,W =g(h,htd = gO,,B) = 0, 
da,(~,,~3)=g(~,,~,~3) = -s(c;,,td =O, 
d~,(~2,~3)=g(~2.~,~3) = -g&,td = -1. 

Similar arguments show that 

doz(Ct>M = 0, da2(6t,t;3) = 1, doz(CzyC3) = 0. 

Therefore 

dw, (61>62) = 0, dw(tl,C3) = 1 - 1, dwt(t2,C3) = --t. 

(01 A dw)(t1,e2,t;3) = -totElI - wtO2)(1 - t). 

Ifoi(ti) =ai > O,thenw,(tl) =atr,w,(C;2) =u2(1-t)andsince~2(41) =a](<~) =O 
by hypothesis. We finally have 

(tit A dwr)($t,k,A) = -(a~* +u2(1 - Q2). 

The minimum of the parabola (in t variable) ut = (att2 +a*(1 - t)2) is m = a2 - uz/(ul + 
u2) = u;((llu2Hll(ul+u*N) > 0 since al > 0 and a:! > 0. Hence (WY r\do,)(tt , (2, .$) 
does not vanish for all t E [0, 11. This ends the proof of the theorem. 0 
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Remark 11. 
(1) The hypothesis in the theorem that czyi (tj) = 0, Vi # j, seems a very mild hypothesis 

which probably can always be satisfied. It is for instance satisfied for contact metric 3- 
structures (and hence for Sasakian 3-structures). 

(2) We suspect that in the definition of hypercontact structure, the riemannian metric is 
uniquely determined by the contact 3-structure, like the metric in the hyperkahler case 
is completely determined by the three k5hler forms. 
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